Lightning Arrester

Doxm...HBHZ
8 Apr 2024
43

A lightning arrester (alternative spelling lightning arrestor) (also called lightning isolator) is a device, essentially an air gap between an electric wire and ground, used on electric power transmission and telecommunication systems to protect the insulation and conductors of the system from the damaging effects of lightning. The typical lightning arrester has a high-voltage terminal and a ground terminal. When a lightning surge (or switching surge, which is very similar) travels along the power line to the arrester, the current from the surge is diverted through the arrester, in most cases to earth.

In telegraphy and telephony, a lightning arrester is placed where wires enter a structure, preventing damage to electronic instruments within and ensuring the safety of individuals near them. Smaller versions of lightning arresters, also called surge arresters, are devices that are connected between each conductor in power and communications systems and the earth. These prevent the flow of the normal power or signal currents to ground, but provide a path over which high-voltage lightning current flows, bypassing the connected equipment. Their purpose is to limit the rise in voltage when a communications or power line is struck by lightning or is near to a lightning strike.

If protection fails or is absent, lightning that strikes the electrical system introduces thousands of kilovolts that may damage the transmission lines, and can also cause severe damage to transformers and other electrical or electronic devices. Lightning-produced extreme voltage spikes in incoming power lines can damage electrical home appliances or even cause death.[1]

Lightning arresters are used to protect electric fences. They consist of a spark gap and sometimes a series inductor. Such type of equipment is also used for protecting transmitters feeding a mast radiator. For such devices the series inductance has usually just one winding

Lightning arresters can form part of large electrical transformers and can fragment during transformer ruptures. High-voltage transformer fire barriers are required to defeat ballistics from small arms as well as projectiles from transformer bushings and lightning arresters, per NFPA 850

Components


A potential target for a lightning strike, such as an outdoor television antenna, is attached to the terminal labeled A in the photograph. Terminal E is attached to a long rod buried in the ground. Ordinarily no current will flow between the antenna and the ground because there is extremely high resistance between B and C, and also between C and D. The voltage of a lightning strike, however, is many times higher than that needed to move electrons through the two air gaps. The result is that electrons go through the lightning arresters rather than traveling on to the television set and destroying it.

A lightning arrester may be a spark gap or may have a block of a semiconducting material such as silicon carbide or zinc oxide. "Thyrite" was the trade name used by General Electric for the silicon carbide composite used in their arrester and varistor products.[2] Some spark gaps are open to the air, but most modern varieties are filled with a precision gas mixture, and have a small amount of radioactive material to encourage the gas to ionize when the voltage across the gap reaches a specified level. Other designs of lightning arresters use a glow-discharge tube (essentially like a neon glow lamp) connected between the protected conductor and ground, or voltage-activated solid-state switches called varistors or MOVs.

Lightning arresters used in power substations are large devices, consisting of a porcelain tube several feet long and several inches in diameter, typically filled with discs of zinc oxide. A safety port on the side of the device vents the occasional internal explosion without shattering the porcelain cylinder.

Lightning arresters are rated by the peak current they can withstand, the amount of energy they can absorb, and the breakover voltage that they require to begin conduction. They are applied as part of a lightning protection system, in combination with air terminals and bonding

Lightning rod


A lightning rod or lightning conductor (British English) is a metal rod mounted on a structure and intended to protect the structure from a lightning strike. If lightning hits the structure, it is most likely to strike the rod and be conducted to ground through a wire, rather than passing through the structure, where it could start a fire or cause electrocution. Lightning rods are also called finials, air terminals, or strike termination devices

In a lightning protection system, a lightning rod is a single component of the system. The lightning rod requires a connection to the earth to perform its protective function. Lightning rods come in many different forms, including hollow, solid, pointed, rounded, flat strips, or even bristle brush-like. The main attribute common to all lightning rods is that they are all made of conductive materials, such as copper and aluminum. Copper and its alloys are the most common materials used in lightning protection

Lightning protection system


must not only have low resistance, but must have low self-inductance.

An example of a structure vulnerable to lightning is a wooden barn. When lightning strikes the barn, the wooden structure and its contents may be ignited by the heat generated by lightning current conducted through parts of the structure. A basic lightning protection system would provide a conductive path between an air terminal and earth, so that most of the lightning's current will follow the path of the lightning protection system, with substantially less current traveling through flammable materials.

Originally, scientists believed that such a lightning protection system of air terminals and "downleads" directed the current of the lightning down into the earth to be "dissipated". However, high speed photography has clearly demonstrated that lightning is actually composed of both a cloud component and an oppositely charged ground component. During "cloud-to-ground" lightning, these oppositely charged components usually "meet" somewhere in the atmosphere well above the earth to equalize previously unbalanced charges. The heat generated as this electric current flows through flammable materials is the hazard which lightning protection systems attempt to mitigate by providing a low-resistance path for the lightning circuit. No lightning protection system can be relied upon to "contain" or "control" lightning completely (nor thus far, to prevent lightning strikes entirely), but they do seem to help immensely on most occasions of lightning strikes.

Steel framed structures can bond the structural members to earth to provide lightning protection. A metal flagpole with its foundation in the earth is its own extremely simple lightning protection system. However, the flag(s) flying from the pole during a lightning strike may be completely incinerated.

The majority of lightning protection systems in use today are of the traditional Franklin design.[13] The fundamental principle used in Franklin-type lightning protections systems is to provide a sufficiently low impedance path for the lightning to travel through to reach ground without damaging the building.[14] This is accomplished by surrounding the building in a kind of Faraday cage. A system of lightning protection conductors and lightning rods are installed on the roof of the building to intercept any lightning before it strikes the building.


Get fast shipping, movies & more with Amazon Prime

Start free trial

Enjoy this blog? Subscribe to Mrmti2

2 Comments