What Is Artificial Intelligence?
Understanding AI
Broadly speaking, artificially intelligent systems can perform tasks commonly associated with human cognitive functions — such as interpreting speech, playing games and identifying patterns. They typically learn how to do so by processing massive amounts of data, looking for patterns to model in their own decision-making. In many cases, humans will supervise an AI’s learning process, reinforcing good decisions and discouraging bad ones. But some AI systems are designed to learn without supervision — for instance, by playing a video game over and over until they eventually figure out the rules and how to win.
Strong AI Vs. Weak AI
Intelligence is tricky to define, which is why AI experts typically distinguish between strong AI and weak AI.
Strong AI
Strong AI, also known as artificial general intelligence, is a machine that can solve problems it’s never been trained to work on — much like a human can. This is the kind of AI we see in movies, like the robots from Westworld or the character Data from Star Trek: The Next Generation. This type of AI doesn’t actually exist yet.
The creation of a machine with human-level intelligence that can be applied to any task is the Holy Grail for many AI researchers, but the quest for artificial general intelligence has been fraught with difficulty. And some believe strong AI research should be limited, due to the potential risks of creating a powerful AI without appropriate guardrails.
In contrast to weak AI, strong AI represents a machine with a full set of cognitive abilities — and an equally wide array of use cases — but time hasn't eased the difficulty of achieving such a feat.
Weak AI
Weak AI, sometimes referred to as narrow AI or specialized AI, operates within a limited context and is a simulation of human intelligence applied to a narrowly defined problem (like driving a car, transcribing human speech or curating content on a website).
Weak AI is often focused on performing a single task extremely well. While these machines may seem intelligent, they operate under far more constraints and limitations than even the most basic human intelligence.
Weak AI examples include:
- Siri, Alexa and other smart assistants
- Self-driving cars
- Google search
- Conversational bots
- Email spam filters
- Netflix’s recommendations
Machine Learning Vs. Deep Learning
Although the terms “machine learning” and “deep learning” come up frequently in conversations about AI, they should not be used interchangeably. Deep learning is a form of machine learning, and machine learning is a subfield of artificial intelligence.
Machine Learning
A machine learning algorithm is fed data by a computer and uses statistical techniques to help it “learn” how to get progressively better at a task, without necessarily having been specifically programmed for that task. Instead, ML algorithms use historical data as input to predict new output values. To that end, ML consists of both supervised learning (where the expected output for the input is known thanks to labeled data sets) and unsupervised learning (where the expected outputs are unknown due to the use of unlabeled data sets).
Deep Learning
Deep learning is a type of machine learning that runs inputs through a biologically inspired neural network architecture. The neural networks contain a number of hidden layers through which the data is processed, allowing the machine to go “deep” in its learning, making connections and weighting input for the best results.
EXAMPLES OF ARTIFICIAL INTELLIGENCE
The Four Types of AI
AI can be divided into four categories, based on the type and complexity of the tasks a system is able to perform. They are:
- Reactive machines
- Limited memory
- Theory of mind
- Self awareness
Reactive Machines
A reactive machine follows the most basic of AI principles and, as its name implies, is capable of only using its intelligence to perceive and react to the world in front of it. A reactive machine cannot store a memory and, as a result, cannot rely on past experiences to inform decision making in real time.
Perceiving the world directly means that reactive machines are designed to complete only a limited number of specialized duties. Intentionally narrowing a reactive machine’s worldview has its benefits, however: This type of AI will be more trustworthy and reliable, and it will react the same way to the same stimuli every time.
Reactive Machine Examples
- Deep Blue was designed by IBM in the 1990s as a chess-playing supercomputer and defeated international grandmaster Gary Kasparov in a game. Deep Blue was only capable of identifying the pieces on a chess board and knowing how each moves based on the rules of chess, acknowledging each piece’s present position and determining what the most logical move would be at that moment. The computer was not pursuing future potential moves by its opponent or trying to put its own pieces in better position. Every turn was viewed as its own reality, separate from any other movement that was made beforehand.
- Google’s AlphaGo is also incapable of evaluating future moves but relies on its own neural network to evaluate developments of the present game, giving it an edge over Deep Blue in a more complex game. AlphaGo also bested world-class competitors of the game, defeating champion Go player Lee Sedol in 2016.
Limited Memory
Limited memory AI has the ability to store previous data and predictions when gathering information and weighing potential decisions — essentially looking into the past for clues on what may come next. Limited memory AI is more complex and presents greater possibilities than reactive machines.
Limited memory AI is created when a team continuously trains a model in how to analyze and utilize new data or an AI environment is built so models can be automatically trained and renewed.
When utilizing limited memory AI in ML, six steps must be followed:
- Establish training data
- Create the machine learning model
- Ensure the model can make predictions
- Ensure the model can receive human or environmental feedback
- Store human and environmental feedback as data
- Reiterate the steps above as a cycle
Theory of Mind
Theory of mind is just that — theoretical. We have not yet achieved the technological and scientific capabilities necessary to reach this next level of AI.
The concept is based on the psychological premise of understanding that other living things have thoughts and emotions that affect the behavior of one’s self. In terms of AI machines, this would mean that AI could comprehend how humans, animals and other machines feel and make decisions through self-reflection and determination, and then utilize that information to make decisions of their own. Essentially, machines would have to be able to grasp and process the concept of “mind,” the fluctuations of emotions in decision-making and a litany of other psychological concepts in real time, creating a two-way relationship between people and AI.
Self Awareness
Once theory of mind can be established, sometime well into the future of AI, the final step will be for AI to become self-aware. This kind of AI possesses human-level consciousness and understands its own existence in the world, as well as the presence and emotional state of others. It would be able to understand what others may need based on not just what they communicate to them but how they communicate it.
Self-awareness in AI relies both on human researchers understanding the premise of consciousness and then learning how to replicate that so it can be built into machines.
TYPES OF ARTIFICIAL INTELLIGENCE | ARTIFICIAL INTELLIGENCE EXPLAINED | WHAT IS AI? | EDUREKA | VIDEO: EDUREKA!
Artificial Intelligence Examples
Artificial intelligence technology takes many forms, from chatbots to navigation apps and wearable fitness trackers. The below examples illustrate the breadth of potential AI applications.
ChatGPT
ChatGPT is an artificial intelligence chatbot capable of producing written content in a range of formats, from essays to code and answers to simple questions. Launched in November 2022 by OpenAI, ChatGPT is powered by a large language model that allows it to closely emulate human writing. ChatGPT also became available as a mobile app for iOS devices in May 2023 and for Android devices in July 2023. It is just one of many chatbot examples, albeit a very powerful one.
Google Maps
Google Maps uses location data from smartphones, as well as user-reported data on things like construction and car accidents, to monitor the ebb and flow of traffic and assess what the fastest route will be.
Smart Assistants
Personal AI assistants like Siri, Alexa and Cortana use natural language processing, or NLP, to receive instructions from users to set reminders, search for online information and control the lights in people’s homes. In many cases, these assistants are designed to learn a user’s preferences and improve their experience over time with better suggestions and more tailored responses.
Snapchat Filters
Snapchat filters use ML algorithms to distinguish between an image’s subject and the background, track facial movements and adjust the image on the screen based on what the user is doing.
Self-Driving Cars
Self-driving cars are a recognizable example of deep learning, since they use deep neural networks to detect objects around them, determine their distance from other cars, identify traffic signals and much more.
Wearables
The wearable sensors and devices used in the healthcare industry also apply deep learning to assess the health condition of the patient, including their blood sugar levels, blood pressure and heart rate. They can also derive patterns from a patient’s prior medical data and use that to anticipate any future health conditions.
MuZero
MuZero, a computer program created by DeepMind, is a promising frontrunner in the quest to achieve true artificial general intelligence. It has managed to master games it has not even been taught to play, including chess and an entire suite of Atari games, through brute force, playing games millions of times.