Kuantum Fiziği Nedir ve Evren'i Nasıl Tanımlar?
Kuantum Fiziği Nedir ve Evren'i Nasıl Tanımlar? Kuantum Fiziğiyle Bilmeniz Gereken 6 Kavram!
Kuantum fiziği, genellikle baştan sona göz korkutucu bir saha olarak görülür. Her gün bunlarla uğraşan fizikçilere bile alandaki bazı konular hem ilginç hem de mantıksız gibi görünebilir; fakat kuantum, özünde anlaşılamaz, sınanmamış veya tutarsız bir saha değildir. Tam tersine, insanlığın geliştirdiği en güçlü teorilerden birisi, Kuantum Teorisi'dir.
Eğer kuantum fiziğine ilgi duyuyorsanız ve bilginizi zenginleştirmek istiyorsanız, bu sahada mutlaka haberdar olmanız gereken 6 anahtar kavram olduğunu söyleyebiliriz. Eğer bunları iyice kavrayabilirseniz, kuantum fiziğini daha anlaşılabilir bulmaya başlayacaksınız. Ama uyaralım: Richard Feynman'ın da dediği gibi: "Rahatlıkla söyleyebilirim ki hiç kimse kuantum mekaniğini anlamamaktadır."
Her Şey Dalgalardan Oluşur, Tanecikler Bile!
Kuantum fiziğiyle ilgili temel kavramlara yönelik bir tartışmayı başlatabileceğiniz birçok konu vardır; ancak şu, iyi bir başlangıç noktası olabilir: Evren'deki her şey, aynı anda hem dalga hem tanecik doğasına sahiptir.
Kuantum Fiziği ile ilgili diğer içerikler ›
- Kuantum Satranç Nedir? Nasıl Oynanır? Gerçek Satrançtan Farkları Neler?
- Parçacık-Dalga İkiliği, Aslında Belirsizlik İlkesinin Bir Çeşidi Olabilir!
- Enerjinin, Uzun Mesafeler Arasında "Işınlanması" Teorik Olarak Mümkün Olabilir!
Her şey dalgadır; hiçbir şey sallanmadan, hiçbir mesafe olmadan.
Greg Bear, Amerikalı bir bilim kurgu yazarı ve illüstratördür.
Fantha Tracks
Tabii ki Evren'deki her şey, parçacık doğasına da sahiptir. Bu durum tamamıyla çılgınca gelse de, şaşırtıcı şekilde aşina olduğumuz bir süreçle açıklanabilen deneysel bir gerçekliktir. AşağŞüphesiz, nesneleri hem dalga hem tanecik olarak tanımlamak, en nihayetinde belli bir belirsizliğe sahiptir. Düzgün bir şekilde ifade etmek gerekirse, nesneler ne parçacıktır ne dalgadır; ancak dalgaların uzaya yayılabilmesi ve karakteristik bir frekansa ve dalga boyuna sahip olması; taneciklerin ise sayılabilir ve sınırlandırılabilir olması gibi bazı özelliklerine sahiptirler. Dolayısıyla nesneleri, bu özelliklerle ilişkilendirilen "parçacık" ve "dalga" özelliklerinin her ikisinin bir versiyonu olarak ifade etmemiz mümkün olmaktadır.
Bu durum fizik camiasında, ışığın fiziğe giriş derslerinde tanecik olarak anlatılmasının uygun olup olmadığı ile ilgili halen sürmekte olan bazı tartışmalara yol açar. Lise derslerinde ışığın neredeyse her zaman fotonlardan oluşan tanecik doğasından söz edildiğini, dalga doğasından ise çok daha az bahsedildiğini (belki girişim konusu haricinde pek konuşulmadığını) hatırlayabilirsiniz. Buradaki tartışma, ışığın tanecik doğasına sahip olup olmaması konusundan ziyade, fotonlara "bir kuantum alanının uyarılmaları" yerine, "parçacıklar" demenin, öğrencilerin kafasında kavram karmaşasına sebep olabilmesidir. Tabii kuantum alanını uyarılmasını anlatmak için, kuantum fiziğine girilmesi gerekir ve bu da müfredatları karmaşıklaştırabilir. Ama eğitimde amaç, gerçeği olabildiğince isabetli bir şekilde insanlara öğretmek değilse, nedir?
Evrim Ağacı'ndan Mesaj
Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %%100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır. Kreosus Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık... Daha fazla göster
Kuantum nesnelerinin bu ikili doğası, fizikçilerin kuantum olgusu hakkındaki konuşmalarında bazen kafa karıştırıcı bir şekilde yansıtılır. Örneğin "Higgs bozonu", Büyük Hadron Çarpıştırıcısı'nda bir tanecik olarak keşfedilse de fizikçilerin "Higgs alanı" hakkında "tüm boşluğu dolduran" ve "yerelleştirilmiş" olarak bahsettiğini duyabilirsiniz. Bunun sebebi, çarpıştırıcı deneyindeki gibi bazı durumlarda Higgs alanının uyarılmalarından tanecik benzeri özelliklerini vurgulayarak bahsetmek daha uygunken; parçacıkların neden kütleye sahip olduğuna dair genel tartışmalar gibi bazı durumlarda ise fiziği, evreni dolduran bir kuantum alanı gibi ele almak daha uygundur. Bu, aynı matematiksel durumu, farklı şekillerde tanımlamak gibidir. Büyük hadron çarpıştırıcısı, CERN
Kuantum Fiziği Ayrıktır!
"Kuantum" kelimesi Latince "ne kadar" veya "ne miktarda" anlamına gelir ve bu, kuantum modellerinin her zaman ayrık (İng: "discrete") miktarlara sahip şeylerle ilgili olduğu gerçeğini yansıtır. Kuantum alanındaki enerji, bazı temel enerjilerin tam sayı katları halinde bulunur. Işık için bu durum frekans ve dalga boyu ile ilişkilidir. Gelin buna biraz daha yakından bakalım.
Işığın Dalga Boyu ve Frekansı Nedir? Aralarında Nasıl Bir İlişki Vardır?
Dalga boyu ve frekansın dalga şekli üzerinde gösterimi
Görselden de incelendiği üzere, iki dalga tepesi veya iki dalga çukuru arasındaki mesafeye "dalga boyu" denir ve "λ" (Yun: "lambda") ile gösterilir. Yani bir dalga örüntüsünde tekrarlanan ifadeler arasındaki uzunluğuna denk gelir. Bir olayın birim zamanda (genellikle 1 saniye olarak alınır) tekrar etme sıklığına ise "frekans" denir ve "f" ile gösterilir. Bu da dalga örüntüsündeki tekrarlanan ifadenin sayısıyla ilgilidir.
Yukarıda bahsettiğimiz gibi, ışığın tanecik doğasına ek olarak dalga doğasına sahip olmasından dolayı, ışık için de dalga boyu ve frekanstan söz edebiliriz. Dalga boyu ve frekansın tanımından yola çıkarak, ışık hızı, dalga boyu ve frekans ilişkisini matematiksel olarak formülize edecek olursak:
λ=cf\LARGE{\lambda=\frac{c}{f}}
λ=f
c
c, ışık hızı sabitidir. Denklemde görüldüğü gibi, dalga boyu ve frekans değerleri çarpımı ışık hızı sabitini vermektedir (c=λfc=\lambda{f}
c=λf). Bu durumdan; yüksek dalga boylu ışığın düşük frekansa ve düşük enerjiye sahip olduğunu, düşük dalga boylu ışığın ise yüksek frekansa ve yüksek enerjiye sahip olduğunu çıkarabiliriz.
Kuantum alanında tam sayı katları şeklinde bulunan ve ışık için dalga boyu-frekansla alakalı olan enerji düşünüldüğünde; her iki durumda da belirli bir ışık alanının içerdiği toplam enerji, o enerjinin bir tam sayı katıdır; yani 1, 2, 14, 137 katı olabilir ama 1.5, π\pi
π veya 2\sqrt{2}
2
katı olamaz. Enerjinin yalnızca belirli değerler alabilmesi ve her değeri alamaması, atomların farklı enerji seviyelerinde bulunması ve katılarda enerji bant yapılarında da görülür. Enerjinin yalnızca belirli değerler alabilmesi durumu, "kesikli, kuantumlu" olarak da ifade edilir.
Atom saatleri tam da kuantum fiziğinin bu özelliği sayesinde çalışır. Sezyum atomunun iki olasu durumu arasındaki geçiş sırasında saçılan ışığın frekansını kullanarak zamanı çok isabetli (ama kusursuz olmayan) bir şekilde tutabiliriz; hatta bu nedenle aralıklarla atom saatlerine "artık saniye" eklememiz gerekir.Benzer şekilde, aşırı-hassas spektroskopiyi kullanarak karanlık madde gibi şeylerin doğasını bu sayede araştırabiliriz.
Bunu ilk etapta anlamak kolay olmayabilir; çünkü temelde kuantum doğayas sahip olan kara cisim ışıması gibibazı şeyler, süreğen dağılımlara sahipmiş gibi gözükür. Ama eğer bunların matematiğini deşmeye başlarsanız, hemen her zaman içlerinde belli bir granülerite (taneciklilik) olduğunu görürsünüz. İşte bu, teorinin tuhaflığının temelinde yatan gerçektir.
Kuantum Fiziği Probabilistiktir (Olasılığa Dayalıdır)!
Kuantum fiziğiyle ilgili en tartışmalı ve şaşırtıcı şeylerden biri, kuantum sisteminde yapılan tek bir deneyin sonucunu kesin olarak tahmin etmenin imkansız olduğudur. Bir fizikçi bazı deneylerin sonuçları hakkında tahmin yürüttüğünde, olası sonuçların her biri çeşitli ihtimallere dönüşebilir ve teoriyle deney arasındaki karşılaştırmalar her zaman birçok tekrarlanan deneyden olasılık dağılımlarının çıkarılmasını içerir.
Bir kuantum sisteminin matematiksel tanımı genellikle, Yunanca bir harf olan "Ψ (psi)" ile gösterilen "dalga fonksiyonu" ile ifade edilir. Dalga fonksiyonunun tam olarak neyi ifade ettiği konusunda birçok tartışma vardır. Bu tartışmaları iki ana grupta toplayabiliriz. Sahadaki jargonu kullanacak olursak "ontik" teoriler olarak bilinen ve şaka yollu olarak "psi-ontolog" olarak adlandırılan bir taraf, dalga fonksiyonunun gerçek ve fiziksel olarak var olduğu düşüncesindeyken; "epistemik" teorileri savunan diğer taraf, dalga fonksiyonunu yalnızca belli bir kuantum nesnesinin temeldeki durumuyla ilgili bilgimizin (veya bilgi noksanlığının) bir ifadesi olarak görür.
Her iki düşünce grubunda da, bir sonucu bulma olasılığı dalga fonksiyonu tarafından direkt olarak verilmez; dalga fonksiyonunun karesi ile ifade edilir. Unutmayın ki dalga fonksiyonu karmaşık bir matematiksel tanımdır (burada "karmaşık"tan kasıt, −1\sqrt{-1}
−1
gibi hayali sayıları içermesidir) ve bu fonksiyonu kullanarak olasılıkları elde etmek uğraştırıcı bir iştir. Bu nedenle, her ne kadar tam anlamını karşılayan bir ifade olmasa da, "olasılıkları bulmak için dalga fonksiyonunun karesini almamız gerektiğini" söylemek, size temel bir fikir verecektir.
Bu, Alman fizikçi Max Born'un ilk kez 1926'da bir makalenin dipnotunda bahsettiği "Born Kuralı" olarak bilinir ve maalesef bazıları tarafından çirkin bir ad hoc (kasten, sonradan yapılan) ekleme olarak görülür. Kuantumun temelleriyle uğraşan komünitenin bir kısmı, kuantumun daha temel ilkelerinden Born Kuralı'nı türetmenin bir yolunu bulmak için etkin bir çaba gösterse de, bugüne kadar bu çabaların hiçbiri tam olarak başarıyla sonuçlanmadı. Buna rağmen bu çaba, konu hakkında birçok ilginç bilimsel bilginin üretilmesine olanak tanıdı.